\

VA\
/) \

/

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

a
\

/,//' A\

/,

y i
=\
(

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

2

OF

3

A

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSé(FZTIONS SOCIETY

PHILOSOPHICAL THE ROYAL

Stress Functions for a Plate Containing Groups of Circular Holes
R. C. J. Howland and R. C. Knight

Phil. Trans. R. Soc. Lond. A 1939 238, 357-392
doi: 10.1098/rsta.1939.0010

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand
corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1939 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;238/793/357&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/238/793/357.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

a
%
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

JA \

Y 4

S

1
/s \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

[ 357 ]

STRESS FUNCTIONS FOR A PLATE CONTAINING
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INTRODUCTION

A number of investigations, both experimental and theoretical, have been made to
determine how the presence of holes in a uniform plate under given applied forces
effects the distribution of the stresses in the plate (see Coker and Filon 1931, chap. 1v).
When there is a single hole in a plate which may be considered infinite, the problem is
elementary; but a hole near to a straight boundary or to a similar hole greatly influences
the maximum stress and complicates the mathematical solution. No general method of
solution has been given and we now extend methods, previously used by the present
writers in particular cases, to a group of problems in which the boundaries possess a
certain invariance. The boundaries we shall consider are a set of equal circles together
with in some cases a pair of parallel straight lines. With each of the circles is associated
a rectangular co-ordinate system, and it is essential to the method that the boundaries,
boundary conditions and infinity conditions should remain invariant under a trans-
formation in which each co-ordinate system and corresponding circle transforms into
another system and circle of the set.

The following configurations have boundaries with which we can deal:

(1) One pair of circles.

(2) Two pairs of circles.

(3) A single infinite row of circles.
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358 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

(4) A double infinite row of circles with arbitrary stagger.

(5) A doubly periodic distribution of circles.

(6) One circle, a pair of circles, or an infinite row of circles with one straight boundary
similarly related to all the circles.

(7) One circle between parallel lines.

(8) One pair or two pairs of circles symmetrically placed between parallel lines.

(9) A single row of circles symmetrically placed between parallel lines.

Of these (1) may be treated using bipolar co-ordinates, which method has been used
by Jeffery (1920) to obtain a solution for the first of (6). A solution for (3) has recently
been published by one of the authors (Howland 1930). (7) has been discussed by us in
previous papers (e.g. Howland and Stevenson 1933; Knight 1934). Doubly periodic
functions are required for cases (5) and (9), and, as they introduce considerations of
rather a different character, will not be dealt with here. The second and third of (6)
reduce in special cases to (2) or (4) and, generally, are better treated in a different
manner. This leaves (2), (4), (8) to be considered and (1) will be added to these for the
sake of comparison.

Our method consists in constructing biharmonic stress functions which are invariant
under the same transformation as that which transforms one circle into another of the
set. Then the functions are expanded about the centre of one of the circles. If the
boundary conditions, which also must remain invariant, are now satisfied on this circle
using these functions, the conditions on the other circles of the set will be automatically
satisfied. When there are additional straight line boundaries the functions must be
constructed so that the conditions on these are satisfied in advance.

It will be noticed that the transformations which leave the boundaries unaltered are
of the type

T, z'=z+a, Ty, 2/ =—z+c,
T, 2z =Z+5, T, z'=-—z+d,

where z and z" are complex variables associated with the centre of two of the circles and
a, b, ¢, d are, in general, complex quantities depending on the particular configuration
considered. The stress function must then be of the form

x(z) == 2f(1z),

where T is one of the transformations of the group.

1. THE GENERAL METHOD OF SOLUTION

Consider a uniform plate of infinite extent or bounded by parallel straight lines and
containing a number of equal circular holes having an invariancy of the type men-
tioned. It is supposed to be in a state of generalized plane stress defined by a stress
function x. This function must be biharmonic, i.e. it must be a solution of the equation

Vix = 0. (1-1)
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 359

The boundary conditions to be satisfied are:

P
dx dy

~_ 0% . 0% =
(a) the stresses = iy W= W=
must tend to constant values at infinity;
(b) on the circumference of each circular hole, the stresses
2 —
—~_10% 1(7X~0, 7 3(19)()20;

=gty =0 =550

(¢) if there are straight boundaries parallel to the x-axis, the stresses 77 and Xy must
vanish on them.

We first construct a set of biharmonic functions having singularities at the centres of
the circles and which are invariant under the transformation which leaves the circles
unchanged. If there are straight boundaries the condition (¢) must be satisfied as well.
Two methods may be conveniently employed to obtain these functions.

When the plate is infinite we start with a complex harmonic function

wo(2) = uy—1vy, (1-2)

having the requisite singularities and invariance. Differentiation of w(z) s times leads

to the function
w,(z) = u,—w,. (1-3)

The real and imaginary parts of the complex functions defined by equations (1-2)
and (1-3) will be functions satisfying the conditions, and have the form

uy = —logr- 2 (%, cos nf -+ °f,, sin nf),

0 . (1'4)
vy = 0+ 3 (%, cos nf 49, sin nf),
n=1
U = =5 cos s+ % (S, cos nfl 454, sin nﬁ),'
" (1-5)

v, = r~sin s+ § ™ (Sy, cos nf 443, sin nf).
n=1

In equations (1-5) s can take all integral values >0, and we therefore have a double
infinity of suitable harmonic functions. The coefficients %, etc. depend upon the
particular problem considered in which the polar co-ordinates used have their pole at
the centre of one of the circles of the system. From these functions we next construct
biharmonic functions satisfying the same conditions. The method of obtaining them
varies according to the problem to be solved, but they will be of the type

5

U, = r=s*2cos sl + % {(sA, +3Ar?) cos nf + (*B,,+*B,r?) sin nf},

"0 (1-6)
V =rst2sinsf+ 3 rm{(*C,+°Cpr2) cos nf + (*D,+°D,r?) sin nd}.

n=0

44-2
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360 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

These functions will usually be sufficient for our purpose (see Howland 1935) of
finding the stress function for the problem. In certain cases further functions may be
required. They will be given later when the various configurations of circles are con-
sidered. They are found by considering the stress functions for forces acting, in suitable
directions, at the centres of the circles. Leaving, for the moment, the method of con-
structing the functions when the plate is of finite breadth, we next have to combine the
stress functions given above in such a way that the boundary conditions (4) on the
circles are satisfied. The functions are such that if the conditions are satisfied on one
circle they will be automatically satisfied on each of the others. In each case considered
below we shall construct all the functions sufficient to solve the most general problem,
but to indicate the method of solution we assume here some simplification. Suppose
symmetry conditions are such that our functions are even in both x and y. Our co-
efficients are then all zero except those of the even cosines and terms independent of 4.
Suppose further that y, is a stress function which would give the stresses in the plate if the
holes were not present, i.e. the stress function giving the infinity conditions. We then
assume as our final stress function

X = X0+L0u0+ 2:1 (LZS Ugs _}_ I\/I2SUés)‘ (17}

The constants L, M have to be chosen so that the conditions () are satisfied. Hence
we substitute this y into the equations for 77 and rf and equate to zero after putting r = a
(the radius of the circle). This leads to a double infinity of linear equations between the
constants. They are of the form

LG = P2n + 2"}50 Lo + Z (2"}125 Lzs -+ 272i2s Iﬂ2s) 5 1
s=1
(1-8)

= Q.+ %o Lo+ 2 ( yzsts’FZ"kstzs%l

where P,,, Q ,, are known constants depending on y,, and the new coeflicients ?*4,_, etc.
depend upon the coefficients A, etc., and upon a. A formal solution of the equations is
given by

[ve)
1 — (r) (r) .
L2n '"“ E L2}r’z ] M2n - z M2Z s (1 9)
r=0 r=0
0) O .
WhCI‘C Lén) - P2n> ) Q2n>

L = 2Ly~ 3 (o, L 40, M) | (1-10)

M(r) — 2n L(r 1)+ E (27?] L(1 1)+2nk M(r 1))

J

The validity of this solution is established if we prove that the seriesin (1-9) and (1-10)
are convergent. This can be done in particular cases if suitable inequalities are found for
the coeflicients >*A,,, etc. In every case so far investigated the series have been proved
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 361

convergent provided the ratio of the radius of a circle to some other typical length, such
as the distance between two centres, is not too large (see e.g. Knight 1934).

For the problems in which the plate is of finite breadth the sets of stress functions are
most conveniently found by a different method. We start with a fundamental stress
function representing forces at the centres of the circles which leave the straight edges
free from stress. This is expanded in a series about one centre. The coeflicients in these
series contain ¢, the modified value of Poisson’s ratio used in generalized plane stress
(Filon 1903, p. 67; Love 1927, p. 138). These functions are biharmonic functions for all
values of ¢, and this may be treated as an arbitrary constant provided the functions
obtained from the fundamental one are of the type giving single-valued displacements
(Knight 1934, p. 256). Having given ¢ a particular value we obtain by successive
differentiation functions of type (1-6).

In the most general problem four sets of functions will be required, two sets u; and
two v,. These may be found from two fundamental functions by giving ¢ two special,
suitable values. The method of solution is the same as before, for the infinite plate; but it
is, in general, complicated by the fact that four sets of unknown coeflicients will have to
be evaluated by the successive approximations.

2. Two EQUAL CIRCLES IN AN INFINITE PLANE

Let the co-ordinate systems associated with the circles as shown in fig. 1 be defined by
z=2x+41y, z' =x"4u1y' (2-1)

Fi1c. 1
We then have invariance for reflexion in a line parallel to the y axis midway between
the centres. If the centres are at a distance b apart, the relation between z and z’ is

z' =—(z+b).
Define subsidiary variables by

(=zfb, ¢ =2[b=—(@+1))
E=xlb, n=ylb, p’=C( |
Harmonic functions of the required type are
—w, = log {+log &',
( _ )s—l A 7 ,
s = G2 ggg(logg) + g (log ¢ )}

= {0 (=)PA+D, (s=1).

(29
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362 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

Omitting a constant from w, which is trivial, we have the following expansions:

o (%)n

w, = —log {+ gl————ﬂ——f”, (2-3)
s S __\nts nf-s—1 on .
w =k 3 (e (T (24

If we write w; = u,— v, we obtain, by equating real and imaginary parts, the func-
tions
—> prcosnl )
> (25)

],\

= —logp+ 2

= 3‘ vf-p sin nd,

n=1 I

‘/\

u, = p s cosst+ io(—)"“ (n+;_1)p" cos nf, |

v, =pSsinsf+ > (—)** (n e l)p" sin nf.
n=0 n
Suitable biharmonic functions are obtained from these by writing, when s> 2,
Us = U9 2’705~19 Vs = V5ot 277“3~~1'
Their expansions are

U, = p~s*2cos sl + z (A, +5A], p?) p* cosnl,

8

] (27
!

V, = p~s2sinsf+ (SD Dy p?) p*sinnl

where SA, =D, = (—)ns (ﬂ+;v ),

(2:8)

SA! — sT)Y — (__\n+s—1 ﬂ—i—.f—l)
A=y = (= (T )

When s = 2 we may take

U, =1-—2n,
= cos 20+ ﬁ (=)™ (1—p?) p*cos nl,
n=0
Vi, = 2nu,

—sin20+ 3 (—)n(1—p?) prsinud,
n=0

Thus the case s = 2 is not special and the coeflicients in the series may be obtained by
putting s = 2 in the equations (2-8).

The biharmonic functions U, and V, will not be required since they correspond to
zero stresses, but functions U and V; may be required in any particular problem. Some
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 363

care is required in these cases in order that the displacements obtained from them may
be single-valued.
Such a stress function is that for an isolated force acting at the origin. If the force acts

in direction OX, we have, apart from a multiplying factor,

X(©) =+ 2 Elogp 2, (2:9)

where ¢ 1s the modified Poisson’s ratio.
Hence we define

Uy =x1(8) +x1(¢)

— lTu—Qgp cos 0log p—20p sin 0 + % (°A,,+9A! p?) p" cos nf. (210)
o n=0

Similarly, if we take an isolated force in direction OY which is

1-—-2
x2(8) = *fjf’?log/)-F 280, (2:11)
we have V= x,() +xa(L")
= »11~:-20g,0 sin flog p+ 20p cos 0+ § (°D,+°D;, p?) pmsin nf. (2:12)
- n=0

In the above series the coefficients have the values

A (—)"{1—20_ 3—4o

1—o | n 2(72—1)}’ (n>1),

0A! — 0D’ — (=) 1 : (2-13)

o (—)"(3—40 2(1—0)
D”"§_0{2(n——1)“ o }, (n>1).

The undefined coeflicients may be taken to be zero.

3. TWo PAIRS OF CIRCLES IN AN INFINITE PLANE

Let the centres of the four circles be at the points given by z = +p-1q, where
z = x-+1y defines a rectangular co-ordinate system. At the four centres we take four
subsidiary co-ordinate systems as shown in fig. 2. We then have invariance for re-
flexions in the axis of x and y. The four systems associated with the circles are

z) = %+, = z—p—1ig, Zg = X3 +iy3 = Z—p—1q,

Zy =Xyt lYy = —Z—p—iq, z,=2x+1Yy=—z—p—14.
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364 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

The complex harmonic functions given previously (Howland and McMullen 1936)
are defined by
—w, =logz,z,252,, (3-1)

T

When expanded these are

e - T N S G L T
Wo =l Rt B i T 2 gy 2w (@l

_i © (m+s—1 (_)n+32? (_)32711 (_)n+se—(n+s)i¢
ot 2 U e et @ )
in which ptiq = lei®. (3-3)
2 y
LN I .
|
q
o ’JJ
% 3,
Fic. 2
If we write as before w, = u;,—w, and z; = re?,
then uy = —logr+ ;; (%, cos nf +°f, sin nf),
n=1

R
—~
W
15N
~

vy = 0+ 2 (%, cos nf -+ 93, sin nfl),

o)
u, = r-scossf+ > r(‘a, cosnd+f, sinnf),
n=1

v, = 17Ssin 50 i ™(5y, cos nf 44, sin nl)) ;l
n=1

where the coefficients have the following alternative forms according as n--s is even or
odd: '


http://rsta.royalsocietypublishing.org/

A

\

A\

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

.
/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 365

room o (Y b (Y,
A -
o (gt - )

n-+s odd: ‘a, = —(M—;_—l){(Qpl)nﬂ%—coiz(g;ti) ¢}, ]
B (M g,
Hs=n-1)  gin (n ( (3:7)
syn:_«(nﬁ—;—l){(‘&;q)nﬂ s (éz)ﬁ) ¢},
e (T Y

The coefficients in (3+4), i.e. when s = 0, are not special and are given by the above if
(n; 1) is interpreted as 1/n.

We now define biharmonic functions in the following way.
— 3 4
Let u, = ulV +ul? +u® +ulP, 5s=0,

where the four terms represent the contributions from the four singularities taken
in the same order as above. Then

2) 4
(P +uP —u® —u®)

will be a biharmonic function with the right type of invariance. It is evident that if we
now change the signs of all the terms in the equations (3-6), (3:7) which contain powers
of 2¢ or 2/, and if we denote by *a;, etc. the modified values of a,, etc., the new function
1s

yl{r“s cos s0+ 3 (%, cos nf + 34, sin nﬂ)}
1
A more convenient standard function is, for s> 2,

V,=v,_,+ 2y1{r‘°"“ cos (s—1)0+ % (5~ 1y, cos nf 4714 sin nﬁ)}

n=1

= r=s*2sin s0 4 % {(*C,+°Cy12) cos nf + (*D,,+°D, %) sin nf}, (3-8)
n=0

Vol. 2g8. A. 45
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366 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

where, for n-s even,

¢, — (n+;~2)s1nggl—;n{r;22)¢’ )
=,

n4s—2 1 ()26 cos (n4+s5—2) ¢ } (89)
‘D, = ( n ){(2p)n+s~2_ (Qq)n+s—2_ (20)w+s=2 }a
D= (" gt oy — ot 29

and for n-+s odd,

et e 29
(29)n+s—2 (21)n+5—2 )

(Qq)nJrs (2[)n-+-s

r (3'10)
D = —

n

"5
Q- (nﬁ—s_l){(‘)%(s—nwv sin(n+s)g_(5}’
5

1 cos (n+s—2) ng}
(2p)n+s~2 (2[)n+s~2 >

T L]

A second standard function is, s> 2,
U, =u,_,— QyI{r‘S“ sin (s—1) 0+ % (s~ 1y; cos nd +*-14; sin nﬁ)}
n=1
=rs*2cossf+ 3 r{(*A,+5A, %) cos nf - (°B, -+ B, r?) sin nf}, | (3-11)
n=0
with coefficients given by

n-4-seven: A =

{ 1 () cos (nd-5—2) ¢}
2p)nrts=2 (2q)ts2 (20)w+s—2 )
{ s=m)  cos (n+sj ¢} ’

A” = )n—l-s (2[)n+s

(3-12)
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[N

n+s odd: Ay = “(Hff 2){(2p>}’+8—2+cos ((gz;d*f | ¢}’
A (0 g —.
=t
we (G

When s = 2 the functions have the modified forms
U,=1-— le{r"l sin 4+ % r(ly; cos nf 19, sin nﬁ)}
n=1

= cos 20 + § ™ (%A, + %A, 7?) cos nf+ (*B,, -+ ?B,,7?) sin nf}.

n=0

V, = le{r“l cos 0+ i (la, cos nf 14 sin nﬁ)}
n=1
—sin20+ 3 {(2C,+2C. %) cos nf+ (2D, +2D]1?) sin nf).
n=0

The coeflicients 2A,, etc. are not special and are given by the general expressions
above.

As in the previous section U,;, V, are not required and the functions U,, V, are
obtainable, if wanted, from the expansions of

4 4
UO = §1X1 (Zn)3 VO = §1X2(zn)>

where yx,(z) is given by (2-9) and x,(z) by (2-11).

4. AN INFINITE DOUBLE ROW OF CIRCLES IN AN INFINITE PLANE

Let the circles be arranged as in fig. 3 with their centres at the points (+£na, 0),
(s£na+p, q) referred to axes OXY. Let O’X"Y’ be axes with origin at O" whose co-
ordinates referred to OXY are (p, ¢).

If z=2x+1y, 2z =x"+1y,
then Z' = ptig—z. (4-1)
Harmonic functions having the right sort of invariance are defined by
—w, = logsin nz/a-logsinnz’[a
= log sin n{+logsin 7 ({,—{), (4-2)

where {=2zla, (= (p+ig)]a;
45-2
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and by w, = 7 {(— ) ogsinn{—logsinm({,—{)}.

These functions may be expanded as follows:

wy = —log {4 3 %, (",

n=1

0 0,4 [
where a, = %a,+"a,,

0, __ 0,
and , ay, = 0o,/n, a5, =0,

Oay = mf,(c)n!;

RAWaA

p
NPANPY,

()

1
N

dah
NI

0
with o, = 2 K,
k=1

A =x £ = {042 1 @),

¢ = cotm{,.

The expansion for w, follows at once and is

wy = {74 3 v,

n=0

Ky ____51 SII
dn‘“ an+ dn,

2n-+2s—1
2n+2s9

ey = 2( 2n

2%, _ 9%+l
Aopy1 = gy, = 0,

2n-+2s-+1

25+1,7 —
Aopyy = ( o1 )”2n+—23+2>

s = w5, (0) Il (s 1)1,

(4-3)

(4-4)

(4:5)

(4:6)

(4-7)

(4-8)
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 369

The real and imaginary parts of w, provide suitable potential functions of the usual

form: if
o B )
pe? = w, = u,—1w,,

u, = —logp+ E 0" (%, cos nd +f, sinnf),
n=0
vy = 0+ ﬁ p"(%, cosnd 493, sinnd),
n=0

u, = p~° cos st -+ iop”(san cos nf 4, sinnf),

v, = p~ssinsf+ %0'0"(8}’” cos nfl -0, sin nd).

(4-9)

(4:10)

Explicit forms for the coeflicients are easily written down in terms of the real and
imaginary parts of f,(c), but are rather complicated in character. We shall content
ourselves by considering three special cases in which there is some simplification.

The parallel position

The first special case is that for p = 0 when the lattice of centres is rectangular. This

will be called the parallel position.

an
N
p

00

N

Fic. 4

£

N

R

N
We have here {o=1q/a, ¢=icothmgla=1ic.

Hence f,,(¢) is real and f,,,,(c) is a pure imaginary; writing

T2 on(0)(21) 1 = boyy T o1 ()| (20 A1) = by,

we obtain Oy, = —90,, = by, + 05,/

0 - 0 — )
Boni1 = Wonsi1 = 2n+1

0 -0 — 0 — 0 —
ﬁ2n - }’211 - a2n+l - 6\2n+1 = 0.

(411

(4-12)

(4-13)
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370 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS
For the general function the coefficients become

2n-42s—1
230‘271 = 233271 = ( ) ){202n+2s -+ <27’L + 25) 52n+25}’

2n-+2s-+1

23+1“ . _23+13 _
2n+1 2n+1 7 27’l+1

) {H 202n-b2s-k2 + (27’1 + 25+ 2) b2n+23+2}3

S, =0, =0, n-+s odd, P (4°14)

s, =5y, =0, n+ts even,

%:sﬁn:(

n4-s—1
n

) (n+$)b,.,, n+sodd.

J

To obtain suitable biharmonic functions we first modify the coefficients by changing

the signs of all terms arising from the second row of centres. Let the changed coeflicients

be denoted by *«;, etc., as before. The subsequent procedure is exactly as in the previous

section and the equations (3:8), (3:11) hold when the new “a,, etc. are used. The
coefficients are found to be, for U,

2n-25s—2
23A2n = ( M ){202n+2s—2+ (27’1+25’——2) b2n+2s-—2}5
2n-+2s
2SH‘A271+1 = (271—{— 1 ){“« 202n+23+ (2ﬂ+2$) b2n+2s}3
, 2n-+2s—1 \ 4-15
A, = ‘( o1 ){2‘72n-|-2s+ (2n+25) by o) ( )
, 2n+2s5+1
A = ‘( on-|-2 >{“2”2n+2s+2+(2”+25+2) bonrograts
A, = AL =0, n-+s odd, J
B, =B, =0, n+s even,
5B, = (n+2—2) (nt-5—2)b,, s, n-tsodd, (416)

n+s—1
n+1

sBy = —-( ) (n+$)b,,, n+sodd.

For V, we have, for all values of » and s,

s =B sC — sB/

n nd n ny } (4’17)
D = A, D! = —sA’,

n nJ

The functions U,, V, are not special, while U, V, may be obtained in a manner
similar to that used previously. They are not of particular interest here, for in most
problems with these boundaries u, may be used instead of U, etc.
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 371

The alternate position

The next special case in which there is some simplification is that in which p = la.
The circles are arranged as shown in fig. 5.

N TN
NN N
O N N
NN AN

Fic. 5

The particular value of the quantity ¢ is now

¢ = cot (imq/a+m/2) = itan (¢q/a) = it. - (4-18)
Let T2 on(€)[(20) = baps T2 Y1 (0) [ (20 A-1) ) = i . (4:19)
Consequently the harmonic and biharmonic functions for this set of boundaries are

obtained from the equations (4:13)—(4-17) when &, has been replaced by b,.

A row of pairs of circles

A third special case is that for ¢ = 0. The boundaries are now pairs of circles with
their centres collinear (fig. 6).

F1c. 6
The coeflicients in the harmonic functions simplify at once and are

S/?n =0, ‘,=0, san == Ay (4'20)

Since now ¢ =cot(mpla), let =f,(c)/n! =d,. (4-21)
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372 R. C. J. HOWLAND AND R. G. KNIGHT ON STRESS FUNCTIONS

The biharmonic functions have the same form as before with the special coefficients
given by
2n+4-25s—2

2SA2n = ( ) ){202n+2s—2+ (272'1—23_2) d2n+2&—2}9
21 8= (et N2t (20429 oy,
> (4:'22)
, 2n-+2s—1
ZSAZn = '—‘( 2n-+1 ){202n4—25+ (272"]* 28) d2n+2.5‘}>
2n 251
BHIA, z——( ) — 209, 9510+ (204+2542) dyy, o000}
2n+1 2n+2 { 2n+2s+2 ( ) 2%2\—‘-2})
sAn - SA?’Z - 07 ﬂ—]—S Odda \l
5B, — B] —*C,, — °Cl, — 0, (4-23)

D, = —sA,, D = A

n

5. THE EXPANSIONS FOR FORCES IN A STRIP

For the problem of circular holes in a strip we take as our fundamental singularity a
force acting at a point which is to be the centre of the hole. Moreover, this force must be
given by a stress function which produces zero stresses on the parallel straight boundaries.
We have, therefore, to consider the expansion of such a function about its centre and
about other points in the strip. When this has been done suitable singularities will be
taken and combined to give the required functions in the various cases.

' /L

7

e 0

/

Fic. 7

(a) Longitudinal force acting at (o, ) expanded about (o, h)

Let the strip be bounded in the xy plane by the lines y = + 4. Polar co-ordinates are

chosen so that
¥ =rsinf, y—h=rcosl. (5-1)
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 373

The force P, acting at (o, ), is taken in direction OoX ; then writing
x/bzg, y/b:% /Z/b = 0, (5'2)

the stress function is (see Howland 1929)

Pb
X_;g,—(‘l‘j‘){(l_gﬂglogﬁ%—%l— ) (n—o) 0+ P} (5-3)
where D = ¥+ X2+ X3+ Xas
and X1 :J” v (25_!_”6) ¢ (B;+B,) sinuf du,’
0 u?2]
Yo — f SO (B By sinu i
> (5’4)
Yy — ””Cq:ici”’) S (B, - B,) sinu du,

f ¢S ”“‘C —BY) sinué du.

The new symbols denote

s =sinhu, ¢=coshu, S =sinhuy, C = cosh uﬂ,} (5:5)
(5
2 = sinh 2u-2u, X" = sinh2u— 2u;
and B, = [u(l—a)—- (1—20)] e vtl-®),
= [u(14+ao) — (1—20)] e7ilte), (5:6)
5.
~ [2(1—0)—u(1—o)] 1=,
B, =[2(1—0) —u(l+4a)]enlte),
To obtain the expansion about the singularity, i.e. the point (o, /), write
E=psinl, p-—o=1p"= ,ocosﬂ,\‘
C’ = coshup’, S’ =sinhuy’, (5:7)
¢y = cosh 20u, s, = sinh 2qu. J

Then substituting the values of B, etc. into equations (5-4), we get, after some
reduction,

Xt =[S0+ U,S Uy C o+ Uy S
0
(5:8)
Yot X :f e (VIC H+V, SV €4V, 'S} dy

Vol. 238. " A 46
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374 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

where

U, = 20u?s,— (1 4-a?) u?c,— (1 —o?) u? —qusye ™2

+3(1—-20) [(cy+1) (2u-+1—e2) — 2aus,|,
U, = au[ (2u—e %) ¢y — 1] — (1 +0a?) u’s,— (1 —20) [(cy+1) au—F(2u-+1—e ) 5,],
U; = 32u—1—e2) usy—oau?(c,—1) — (1 —20) us,,
U, =
V= (2u+te2) qusy— (1 +0?) u’c,+ (1 —a?) u?

—(1—20) [ausy—$(2u+1+e¢"2) (¢,—1)],
Vy = (2u+-e72) aucy— (14 0?) u?s,+ou— (1 —20) [au(cy—1) — 1(2u-+1+e72) 5],

I

(2u—1—e2) (cy41) u—au?sy— (1 —20) (co-+1) u,

Vi =43 2u—14¢"2) usy—au(cy+1) — (1 —20) us,,
V,=3@u—1+e2)ulc,—1) —aus,— (1—20) ulc,—1).

In the integrals of (5-8) we now use the expansions

psin (2n+1) 0,

u2n+1 2n+2 u2n 1p2n

2n4+-1)! " (2n—1)!

"sinuf = i { }sin 2n,

uZ 511’1(9 oo uZn 2n+1 u2n +1,42n+3
[_ yak +z{ (,0)' +<2n—{p2) }sm(Qn rl)H:l

n=1
N

'S 51nu§-§

o 4N Np—2U
Let f %du =1, i g,%m du = J,,

f z_tjpg)jgg@u du=C,, J. ”r,lC_OShQ“”e du =D, (5:10)

f u”smh 2ou du—S,, f w" sinh 2owe=2¢
0 0

D s =
and denote with primes the corresponding integrals in which the X is replaced by 2.

Then provided the order of integration and summation may be changed we obtain
the series

n=1

X1 Xe = 2 (A'+B'p ) psinnd,
(5-11)

XaTxe = 2 (A, +B;p?) psinnd,
n=1
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 375

where
1
Aj, = (572—)7 {(n—1) aly, , +20Cy, —naC,, ; — (1+0?) Sy, +nS,,_; —§1S,,_,
—aDy, ; —3nTy,_y— (1—20) [a(Cyy_y+ 1y, 1) —Sguy
+(n—%) Sgp_g+ %TZn—Z]}:
' 1 _
AZn—l—l - (271—-]— 1)| (1”—06 ) 12n+1 (1+d2) C:271—1-1_l_2f)£s2n+l”“06'1 Zn}
1
+2(2n)|{(12n+02n) %(IZn I—I_CZn 1) SZn_%(DZnﬂ1+J2)z—l)}
(1—20) (1 | I, +C S, —1(D
+(2n_|_1)“‘{( 2n+ 2n)~n< 2n—1+ Zn—l)_a 2n“§( 2n—1+\]—2n—1)/>
, 1

B2n = Q@%—'{:—l—ﬁ {(x(12n+1 - CZn+l) + S2n+l - %SZnh—%Tma (1 - 20-) S2"}’

1
= W{(IMH’*‘ C‘2n+2) ‘“%(Iznﬂ + Can) ——ocS2n+2

M%(JZ?HI +D2n+1) - (1 - 20) (I2n+1 + 02n+1)}’

’
B2n+1

Aé’n = ( );{ ( ) 2n 1+2“02n ”“Cén—l“— (1_*_062) Sén+nsén«l 2”SZn 2

+ “DZn—l + ?nTZn—Z - (1 - 20-) [a(cén*l - Ién—l) - Sén——l
+ (72—- %) Sén~2—%Tén—2]}9

]‘ ! ! ! e ntd
Ajyi1 = (“Qm {(1—0a?) Ly — (1+a?) Gyiy + 208, +aTy,}

]‘ ! ’ ! ’ ’ ’ 7
+__T {(GZn_ IZn) - %‘(CZn—l - IZn—l) _aS2n+ %(DZn—l MJ2n~l)}

12 o , , , , ,
B N MNEEC 1L
1 ! !/ ’ ! ! 7
By, = mq_“i‘)", {““(C2n+1+12n+1) + 85,01 — 395, + 315, — (1—20) SZn}J
1

"

2n+1 T é(ﬂé}? (Cén+2_1én+2) “%(Gérwl —'Ién%—l) _OCS‘.;JH—Z
+ %(Dén-kl —Jén—;-l) - (1 - 20) (CénJrl - Iém-l)}'
We thus have the stress function given by

Pb

y = (i—0) (1—20) psinflogp+2(1—0) Opcosd

+ 3 [(AL+AL) -+ (B,+B!)s?] pnsinne}u

n=1

(5-12)

. (5:13)

(5-14)

46-2
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376 R. C. j.‘HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

It will be noted that some of the integrals in the above coeflicients are divergent at the
lower limit. The convergence of the integrals (5-8) has been discussed (see Howland
and Stevenson 1933), but the coefficients we shall use require some investigation. The
divergent integrals occur when 7 is zero or unity in the coeflicients A{, A{, Aj, B]. The
first and second of these, since they multiply terms producing zero stresses, may be put
equal to zero. Consider Aj, this is

#2005 —aCi +aDf — (1 +a%) 55+ 5] — 54+ 51
—(1-20) [2(Ch— 1) —S{ + 38— FTh1).

Of these S} is convergent at the lower limit but the others diverge. If, however, we take
the combination 2C; — G} -+ D}, we may interpret it as the single convergent integral

du.

f"o u(e 2 —1+2u) cosh 2ou
0 2

Similarly, the other combinations are interpreted as

du,

0 (€ o —2u .
25 —S;+ T} ::f (2u—1 —HZ, ) sinh 20w
0

and Cl—1 :f‘” (COSthft—l) udu,
0

which converge.

In the other coeflicients one other combination occurs which has to be considered.
This is

D] J‘ (cosh 205137 1) ue” du,

which presents no dlﬂiculty
(b) Longitudinal force acting at (—a, —h) expanded about (o, k)
A force P acting at (—a, —#) in direction OX is given by a stress function
x = ~in(i—0) {(1—20)& loge' +2(1—0) (' —a') 0"+ D'}, (5:15)
the relation befween the accented co-ordinates and the unaccented being
(' =x'b=—(x+a)/b =—(E+]), '
7 =y'b=—ylb=—n, [
p=LEHL) (401, tand' = (E-+F)/(n-+a).

Expansions of £'logp’ and (y'—a) ¢’ are first required. These may be obtained as
follows: let

(5:16)

C=Erily—) =ipe
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 377

so that k = /(4a®+4f?), ¢ = arctan (f/2a). (5-17)
Then since log ({+7) =logp’ +i(3m—0"),

and log ({+7) = logy+log (1+{/y)

B 0 (___)n—l é’ n

= logy+n§l~———n (37) ,

’ . ,,_)n-l p "
we have logp' = loglc—}—n§1~~7—2—— (E) cosn(f—g¢),
o (__\n-1 n
0 =g+ 3 V2 (O sinngo—g)

If trivial terms are omitted we may write

A tog' = (psind+4) 'S =V (E) cosn(o-9)

8

= 3 p{(l, +m, p?) cosn+ (n, +p,p%) sinnd),
0

n

Il

where {y, I,, 1y, 7y, po, may be taken as zero while the other coefficients are

l, = (=)™ {2nasinng + (n—2) fcosng}/k" 2n(n—1),

m, = (=) {sin (0-+1) g1 2(0-+1), 518
n, = (—)"{2nacos np — (n—2) fsin ng}/x*2n(n—1),
b= (=)"*Hcos (n+1) g}k 2(n+1).
Similarly, (4a) 0 = §,‘ P (L 4-m;, p?) cos nf + (n;,+ pr, p?) sin nf},
n=1
where, apart from the zero coeflicients as before,
[, = (—)"*1{2(n—2) asinng +nf cos ng}/xk"2n(n—1),
milz = mn’ ‘
. (5:19)
» = (—)"{2(n—2) acos ng—nfsin ng}/xk"2n(n—1),
fn =1

The function ¢’ is defined by
=" =+ xe X3+ K

in which y; is given by equation ( 5-4) for y, if £+ be substituted for £, and instead of the
values for B}, etc. given by equations (5-6) we have

By = [u(14a) — (1—20)] e~ut1+a),
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378 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

etc., the sign of « being changed throughout. y;, x5, x4 are obtained in a similar manner.
This leads to the expressions:

Xi—l—Xé _ f smu<§+é)) {U C/+IJZS/+U37] CI+U477/S }du]
‘ (5-20)

X+ :—-jo MU D) G VLS Vg OV ).

The symbols U, etc. are those defined in the previous section. Substitution of the
expansions (5-9) together with

: 5 ()™
C’ cosu§ = nz—’O (2n)] cos 2n0,
Yeosuf — 3 BT
S’ cosuf = ng() (Qn—H)!COS (2n-41) 40,
(5-21)
. 0 u271l02n+1 u2n+2/02n+3 0
7'C cos uf = 4| 2p cos 0+ Lu?p3 cos b+ z { (20)]1 + (2n+2)!}c05(2n+1) :I,
s 0 u2n—1p2n u2n+1p2n+2 -
7'S’ cosuf = [up + Z {(2n+l)'+ (Qn_])!}cosQnﬁJ,
we obtain expansions of the form
Xibxe = 3 (L M, p2) cos nf-+ (N, 4P, p2) sin ),
n=0
XX = 2 pH{(Ly M p?) cos nfl 4 (N7 + Py p?) sin nd}.
To express these new coeflicients we need the following new symbols:
(X)uﬂ OOuﬂ . -
f wcosfudu =1, f sin fudu = 1, ]
0> 02
(5-22)
ooune—2u whe2u .
f ¥ cos fludu = J — —~~s1nﬂudu =,
0

and so on, the integrals (5-10) with their integrands multiplied by cos fu being denoted
by italics, those multiplied by sin fu, by ilalics with bar. Primes as before will be used to
denote the corresponding integrals in which 2 is replaced by 2.

Then

Lén = ( {QaS2n (1 _|_052) 6211— (1 —aQ) 7211 - O‘T2n-~1 _na§2n~l
+n(02n 1+[2n 1) (6271—2—[_7271—2'+F2ﬂ—2+72n—2)
+(1—20) [(02n~1+'[2n—1) —3(Dgpg+Tos)

—(n—3%) (C?n—z 1y, ) =4Sy, 11}
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 379

7

1 _ — _ _
Ly, = (‘Q“n—m {2“C2n+1 —aD,,—aly,—(1+a?) S2n+l}

+ (Zn)l{SQn ( 2n— 1+T2n 1) (CZn_72n)}

’

1 T - -
o :2‘(272%- 1)'{02”+1"|'[2n+1 $(Coptdyy+Dyy+Jy,) — 085,14

1 '—( ) (02n+[2n)})
Mén+1 - T TY {§2n+2_%(S2n+1 + 712114—1) (C 2n+2 [2n+2) - (1 M20)§2n+1};

' 1 ]
N2n = _(——‘—)— {2a02n CZn—l _O‘DZn—l - (1 +“2) SZn“+_ nSZn——l
— 31(Sy_g+ Toy_g) +(n—1) aly,
—(1—20) [¢Cy,_y 4+ (n—3) Sg,_5 —Sono1 5 Top_gtaly, 11},
, 1
Nopi1 = W{Z“Sznﬂ’“ (1+a?) Cops1— Ty, — (1—a?) ]2n+1}
1
+m{c2n+j2n—%<c2n~l+_D2n—1—I_]Zn—l+J2n—-1) —aSy,}
+((2 _,_1)|{Czn+12n M(Copy +1oy1) = 5(Dogpoy +J g0m1) — @S5},
, 1
P;, = m_ﬁ)“y {Sons1—3(Son+ T,) —a(Copiy—1Lopyy) — (1—20) Sonts
, 1
P2n+l = 275,7_@7 {Czn+z+[2n+2_%<02n+1+D2n+1+Izn+1+J2n+1)

—0Sgy10— (1—20) (Copi1+1Lopi1)}s
L = 2T~ (142 Gy (1= T (Chy,— T )
—3(Chymy— Dy =Ly, 5+ Ty, _y) —n0S5, |
—(1—20) [a85,-1—Copy 154
+(n—3) (Copy =13 p) — 3Dy =I5, 0) 1}
—Lgy1 = (2n41) {20C3, 1 +aDy,— (1+a2) Sy, +aly,}

+1>'
+7~,{S;n—12—<§;n~1—72',,-1>-~—a<@‘;n+7;n>}

(1—20)
~(2n4-1)!

” 1 ral ali T T T <
—My, = mﬁ {Conin _[2n+1 —35(Cs,— Dy — I, + Jop) —S5,11

{ (C’—én _TZIn) “Fén + ngén—l - %—Télnwl}a

- (1 _20) (Uén_jén)}a
Q_(‘im{sén+2“ ;ZL(SfIZn+1 - 712,n+1) —a(-cén+2~}—72,n+2) - (1 - 20) Sém—l}’

1
"
- M2n+ 17—

(5-23)

(5-24)

(5-25)
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380 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

]‘ !’ 7 4 ’
_Nfll,n = (_2‘71‘)_!{2“0571%”“0271—1 - (n_ 1) a]2n—1 +(XD271—1 - (l %—az) S2n
+nSén—l_%—n(Sén—2’+— 7—"21nh2)
- (l “20-) [“(Cén—l _]2,71—1) _Sflln—l + (n_%) Sén—z_“ .%.“712,71—@]}9
”n 1 ! 4 ! ’
—Njy1 = m‘l {2“S2n+1‘1_““T2n”" (L+a?) Gy + (1 —0?) Iy, 1}
1 4 !’ !’ ! 7 4 !
+2—(—2-7—15_!{02n_']2n_%(02n—1'—1)2n—1M—I2n*—1+‘]2n—l)_O‘SZn} r (5-26)
1—2¢ ’ ’ ’ ’ ’ ’ ’
- ((2n+ 1% {0S5,— Cop4- Loy +0(Cypp oy — 15, y) — 5(Dg, 4 —Jon1)}s
n 1 7 7 ! ! ! ’
— Py, = m{52n+1 — 5085, —13,) —a(Copiy +1opyq) — (1—20) Sonks
n 1 4 !’ ! ’ ’ 4 !
—Poy = m {Cono—1Loyi —3(Conir—Dipi1— Loy g+ Jgpi1) — 085,15

—(1=20) (Cops1—L5p11)}-
The second expansion for a longitudinal force has therefore the form

, Pb o .
X = an(1—0) {(1 —20) ngoﬂn[(ln—l—mnpz) cos nf+ (n,+p, p?) sin nf]

+2(1—0)

n

M

LG, p%) cos n—+ (n,+p,, p?) sin nd]
+ 2 p[{(Ly -+ Ly) + (M, + M) p?} cos nd
n=0
+{(N;,+N,) -+ (P, -+P;) p*}sinnd]}. (5-27)

In the first few coeflicients of the series we find divergent integrals of the same
character as those found in (5-14). These have been investigated and no unusual
combination is found. We omit the details here as also the discussion of those of the two
following expansions.

(¢) Transverse force at (0, h) expanded about (o, h)
The transverse force is one acting perpendicular to the parallel edges of the strip, i.e.

in direction OY. Ifit acts at the point (o, %), it will have as its stress function

¥ — m?‘:a{a_za) (7—a)log p+2(1—0) €6+ 87}, (5-28)

where D" = xi-+ Xz + x5+ o
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 381

and v =[S B P cosutan,
o [2neS—sC o, o
Xo = . ZW&T (P{—7P;) cosué du,
(5-29)
= f uncC— 2(? )5 p 1P cosuédu,
f ”SC PH—P ) cosufdu;
J
with P, = [2(1—0) +u(l—a)] eu1-®),
P, =[2(1—0)+u(l+4a)]evdra,
' 5:30
Pl =[(1-20)+u(1—a)] g~u<1—a)){ ( )
P, = [(1—20) +u(l+o)]e i+ |

The reduction of @” to its final series form is carried out in the same way as in case (a).
We omit the details of this and give the stress function in its required expansion. This is

v :H(I.;%{(1_~20)pcosmogp+2(1-—a) fpsind
£ S [(CL Q) - (D4 D) p2] p”cosm?}. (5-31)
n=1

The coefficients in the series are

> (2 )g{Qo‘CZn (n—1) aCy,_y—aDy,_;— (1+0a?) Sy, + (n— 1) Sy,-1
+%E(n—1) (Sg,_g—Tyg,.o) —naly, ;
—(1—20) [e(Tg,—y —Cgpot) +Sg,m1— (n—3%) Sgp_a—35 Ty, 2]}

, 1

2n+1 = m{<1 __a2) I27z+1 - (1 +062) CZn+1 + (n*%) %(CZn—l _'DZn—l “IZn—I +J2n—-l)
+ (n»—%) (0271 - IZn) +“SZn+1 - (n_. %) (xSZn_mTQn
+ (1—20) [0S, — (Cy,—1,) +1(Cy oy —15,1) +3(Dgpe1—Jon-1)1}

1

,2n = ém {~“(02n+1+12n+1) +SZn+l+%(SZn_rr2n) + (1 _20') SZn}b

1

+(1—20) (Cypi1— Ly1)}s

D,2n+1 = “Izn+2+%(02n+1“D2n+1‘“12n+1+.]2n+1)

(5-32)

Vol. 238. A. 47
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382 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

]' 4 ! 14 ! ’ w
Gy, = (%5, {(”_ 1) aGy,_y +naly, | +2aCy,_o-+aDy, — (1-+a%) Sy,

T (n=1) Sgpy F3(n—1) (Sgp-0F Taps)
+(1—20) [(Cpey + 15y 1) — Sty 4 (n—4) Sppy =3 To0 1},

" ]' ! ! 4 !
C“211+1 = (W{_ (l —_az) IZn+l_ <1+062) 02n+1+ (n—‘%) (C2n+12n)

A (n—3%) $(Coo1+ Doy + L5y +J5001) +2085,, — (n— %) @Sy, + T, ! (5-33)
+ (1 _20) [n<cén—l _J_Ién—l) —l—“sén_ (Cén+lén) _%(Dén—l +Jén—1)]}:

n ]' ! 4 ’ 4 ’ ’
Dy, = 2(2n+1)! {0(X3041— Ci1) + 85501 +5(S5, +T3,) + (1 —20) S5},

” 1 ’ ’ ’ ’ ’ v ’
D2n+1 = W {02n+2+I2n+2+%<02n+1 +D2n+l + IZn»i—l TJZM-I) -*O‘S2n+2

+(1— 20) F[Gén+l + I§n+1)}-

(d) Transverse force at (—a, —h) expanded about (o, k)

A force P acting at (—a, —#£) in direction O’Y" has the stress function

V= gy (1= 20) (=) logp +201-0) €04 8%, (539

where the accented co-ordinates are those used in case (). The function ¢” is similar to
®" but with ', i.e. —(£4/), for &, etc. In fact, the process of obtaining the required
series follows closely that used in (4). We shall content ourselves with giving the final
form. We find that

x" = —lzé——{(l——Qa) > o[ (%, +y,p%) cosnl -+ (z,+w,p?) sinnf]
477(1_ ) n=0 "
+2(1—0) 3 [ (¥, 1 yp%) cos nf-+ (2, -+1,p%) sin nf]
n=0
+ 3 PG +X0) 1 (Y] Y]) %) cos nf
n=0
F{(ZL+Z0) + (W, W) g2 sin na]}, (5-35)

where

J |

)"{2(n—2) a.cos ng +nfi sin ng}/k" 2n(n—1),
)" {cos (n+1) g}k 12(n+1),
)" {2(n—2) asin ng—nf cos ng}/k" 2n(n—1),
)P Hsin (n-1) g}k 2(n--1);

J |

H

H

(—
(—
(—
(—
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 383

x, = (— )" {(n—2) f cos ng + 2nasinng}/c" 2n(n—1),

Yn =Y
\ (5:37)
z, = (—)""1{(n—2) fsin ng — 2nacosng}/k" 2n(n—1),
W, = —w,;
, 1
X2n - (2”) ! {QaCZn_ (n_ l) aC2n—1 _aD2n—l_“ (1 +OL2) S2n+ (ﬂ* 1) SZn—-l

_+_

%—(ﬂ—*l) (S2n-2_712n—2) —7206[2”_1
—(1=20) [a(Ly,-y — Cypy) S5 1 — (n—3%) Sop_0— 515,51}

, 1
= Xon1 = mﬁ{(l —02) Loy — (14+0?) Copy+(n—3) (Cop—1y,)

+3(n—2) (Cop-1—Dopy— Loy + gy 1) + 0S50, — (— 1) “Szn*“Tm (5-38)
+ (1=20) [0Sy, — (Cop—Io,) +1(Copy — Loy 1) + 5 (D —Jon1) 1}

, 1
__'Y2n = E(‘ém {—a(C2n+1 +12n+l) +S2n+l +%—(S2n“7—'2n) + (1 - 20) S2n})
' 1 '
‘"Y2n+1 = m{Czn+2_‘12n+2+%(czn+1—D2n+1“"Izn+1+~]2n+1)
+(1—-20) (Copiy—1p,11)};
n ]‘ ! ’ ! ! ’
— X = W {(n—1)aC;,_,+naly, | +20Cy,_o+aDy, —(140a2) S,
+(n—1) S5, +5(n—1) (S50 Tyy)
+(1—=20) [a(Cop_y+L5uy) —=Sspey + (n—%) S5,y —3 T35, 5]},
n 1‘ ’ 7 ! !
—Xoni1 = (Qn*_"_l—);{“ (1—a?) Iy, —(1+a?) Cyp oy + (n—3) (C3,+1y,)

T3(n=3) (Conr +Digpr+ Loy +J5,1) +2085, 4y — (n— 1) 0S5, +a T35, 1 (5-39)
+ (1 _20) [O‘Sén - (Cén+l2/n) +n(Cén—l+I2,n—l) _%(Dén—l +'J2/n—l)]}>

n 1 ’ ! ’ ’ ! ’
_Y2n = é‘(’é{_{__lh)f {a(12n+l - C2n+l) +S2n+l + %(S2n+ TZn) + (1 - 20) S2n}3

n 1 ! ! ! ! ! 4 7
—Y5, = 22n12)! {ConvotLoio+3(Copi 1+ D115+ T gy y) — 0S5,

+(1—20) (Conry "‘Izlnﬂ)};
47-2
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384 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

Zin = (it (1=0) Ly = (1462) Gy (n=1) (O~ Ty ) W

+3(n—1) (Cypg— Dy, TZn 2+Jzn—2)+2“§2n”(”*1) “Szn—l“—a‘szl
( I ~2)“(62n—-1m7~2n—~1) +‘%(Ezn—2“72n—z>+“§2n—1]}5
nﬁ—ﬁ {20(0 2n+1" (n %) C aD2n ( %) 0672n~ (l + a2) §2n+1

+(n—3) Sop +3(n—34) (Spp 1 —Tip-1)
(

— 1_20)[ (7 C )—nS2n 1+S2n 2n 1]}

UZn—*—l 12n+1 + %(6212 ﬁEanTZn +72n> M(XSZn-i—l + (1 - 20) (6271_7271)}!

g
|
o
)
3’»—‘
+f
——

/ 1 = - < ~ <
Wi = Wm{““(czmz‘i‘lzmz) F80pr0 T 5(Sonr1— Toper) +(1—20) Sy, 0115

Zon = (2m) ,{ (1402) Copt-(n—1) (g +15, 1) +4(n—1) (Cop g+ Di s ]

+[2/n—2+‘]i/2n~2) - (1 __aZ) T2ln+2a§én+ (n_— 1) asén-l +(xTZ,n—1
+(1=20) [Cg,_ 15y 1+ (n+3) (Coupt1500) +5(Dayp+T50) +085,1 13,

" 1 yall T <7
ZZn-H = @-_rl)i {20602,1_“ ( ) 02n+“D2n+ (n+%> oc[an (1 +OC2) S2n+1

+ (72— %) Sén + %(n_ ?) (Sén—-l + TZ,n—I)
4 (1—20) [a(Cy,+15,) +85,+0S5, 1 — 3 Tg011}
" 1 74 ’ ’ T T T <7 Yald T
W2n = ~2—(&“{' ) ! {CZn+I +12n+1 +3 (CZn +~‘DZn'%IZn—{—‘]Zn) _OCSZrH—I + (l —20) (02/z+[2n)}>
W2n+1 = M}‘Q)ﬁ {“(72,7%2#@«;7%2) +Sflln+2 +%(§;n~!1 + T£n+1) + (1 - 20) Sém—l}'

6. A PAIR OF CIRCLES IN A STRIP

L (5+40)

L (5+41)

The general case when the circles are arbitrarily placed in a strip can be considered
with the aid of the expansions obtained in the previous sections, provided there is
symmetry about a point on the axis of the strip. The algebra, although straightforward,
is very heavy, and we shall content ourselves with the investigation of two special

problems. The first of these is when the centres of the circles lie on the axis.

(a) First symmetrical case

Let the centres be at the points (0, 0), (—a, 0), the strip as before being defined by
y = +b. Using the notation of the previous sections, the centres are given by £ — 0,

E=—#

We start with the stress function for two forces P acting at the centres as shown. This

function is

Xo=X— X> (6'1)

where y is given by equation (5-14) and y’ by (5-27) after putting a zero.
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 385

Consider y first. Since a is zero, the coeflicients (5-12) and (5-13) have simplified
values while the integrals (5:10) are related by the equations

Consequently all the coefficients vanish except

Agpir = (2 +1);{ 2Ly, 1+ (20+1) (L, — 3101 — 3 0n- 1)]

1 +(1_20) (2I2n 2n— JZn 1)}9 (63)
By = (2n—|—2 ,{ onva— 3 (Lope1 +J2ne1) — (1“2‘7) | P 3
Y=b
Y
v
y:-b

Fic. 8

Taking the simplified X’v in the same way, we find that x = /)’ and ¢ = 7 and the
appropriate values of the coeflicients are ‘

_ (=) (n—1) o (=)
lZn - 272(272—— )ﬂ2n~1’ Mop = My = 2(272+ 1)ﬂ2n+1’
_ (=) (2n—1) (=) .
Nop+1 = dn(2n+1) 2 Dons1 = Pons1 = d(n11) e (6-4)
g (=t ()
T 9(2n—1) frml 2+l gpprn?

the others vanishing.
The integrals (5-22) have their particular values and the remaining coefficients
derived from (5-23)—(5-26) become zero with the exception of

’ 1 T T T J
LG — !{—2]2n+2n12n—1_n(12n~2+‘]2n-—2)

(2n)!
+(1=20) (215, —Jo,—y—[2n— 175,-5)}

’ 1 T T J. I
2 = (§n17)7{12n+1 —%([2n+*]2n> o (1 - 20) ]2n}>

N’2n+1 = | {_~2‘[2n+1+ (27l+ 1) [IZn—%—(IZn—l—Janl)]

.
(2n+1)!
+ (1—20) (21,,—2nl,,_ 1 — Jon-1)}5

1
Poni1 = (272% )|{ 2n+2 %([2n+1+*]2n+1>”‘(1‘"2‘7) Ly, .1}

47-3
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386 R. C. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

With these values the stress function becomes

Pb

Yo = m{(l~20)psinﬁlogp+2(l—0) Op cos 0

+zu%+%wwwm%mwwﬁ%mﬁMMMM%+nm,<m>
n=0

where = (1—20) ly,+2(1 —0) I, + 1Ly,
@y, = (1—20) my,+2(1 —0) my, -+ M, ()
bopir = (1—20) ng,yy +2(1—0) ny, +Ab 1+ Noyig,
bopi1 = (1—=20) popi1 +2(1—=0) poy iy +Boy 1+ Poyiy

Xo 1s a biharmonic function, containing the elastic constant ¢. It is therefore bi-
harmonic, of the correct invariance and satisfying the straight edge boundary condition
for any particular value of . We must, however, remember the significance of ¢ when
dealing with stress functions which might produce multiple value expressions for the
displacements. If y,is used, & must be retained; but we shall derive from this function a
set of biharmonic functions which, whatever the value of ¢, givesingle valued expressions
for the displacements. Hence ¢ may be given special values. It is simpler to specify the
value of ¢ and then derive the functions. T'wo sets of functions will be required.

To obtain the first set let Po/27 = 1 and also let 0~ co. Then define
Mo U

U, = -2 (s=1). (68)

UO - _'bz’a s ags 5

After some reduction, and omitting a multiplying factor, we find that

U, =—logp+ > (°A,,-+°A},p?) p? cos 2nl

2,
+ 3 ("Bypy "By 1) g2 sin (2041) 0, (6-9)

n=0

1
where 0A,, = _w{2(12n+12n) —(2n—1) (I, y+1y, ) — (Jon-1+Jon-1)}

(_)n+l (271*1)
+ 2nf* ?
OA;n = (’Q”_q_‘l‘)‘, {IZn+1+I2n H}+ Igzn4)2: i (6°10)
1 T — )" 2n
B = (2n+1)! {2ly,,1—2nl,, Jzn}JF"(ji)ﬂgnjp
, 7 n n+1
0B2n+1 :~(2 2 +2)'+(Ig22+3 .
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FOR A PLATE CONTAINING GROUPS OF CIRCULAR HOLES 387

When s>1 we finally obtain, again omitting multiplying factors,

(6-11)

(6-12)

L (6°13)

U,, = p~2 cos 250+ E (BA,,+ A4, p?) p** cos 2nl
n=0
+ 3 (#By By, p7) p sin (20-41) 6,
sy = p72sin (254 1) 0+ 3 (341, 42174, ) p" cos 2nf
n=0
+ 3 (401By, -2 By, %) sin (20-41) 6.
The coeflicients in the even functions are
1 N
2SA2n = “m{2(12n+2s+lzn+2s) - (2”_ 1) (Izn+2s—1 +I2n+23—1)
_(2n+25—1\2n—1
—<J2n+23—1+J2n+2s—1)}+(—)"ﬂ 1( on )'Igz"ﬂ’z“s’
oA 1 wis (2025 1\ 2n+2
2A2n = (25—1)' (272*]- 1)!{12n+2s+1+]2n+23+1}+(—) * ( 2n+42 )lb’2n+2s+2’
1 - —
5By = @T_WT{QTZH%—H_2n12n+23—‘]2n+2s}
nis (2425 2n
(G ) g
BB — Losogu (=) (2”+23+2) 2n+3
2n+1 (28—'1)' (2n+ 1)[ 27l—|—3 ﬂ2n+2s+3' )
- In the odd functions
1 — —_
BHA,, = — W{212n+23+1_ (2n—1) 7’2n+2s“~]2n+23}
avs—1(20-+25\ 2n—1
+ (=) 1( on )W’
2HIA! ~ Lypinin +(_)n+s<2’l+23+2) 2n+2
2n (25)! (2n-+1)! 2n42 ) pentes+s?
1
2SHBZnH = m{2(12n+2s+2+12n+2s+2) _Qn(12n+2s+l +I2n+23+1)
2n-+2s+1 2
—(J2n+2s+l+J2n+23+l)}+(_)n+s( ;;;il_ )ﬂ“znTZ‘s’IT
IR 1 nrsi1(2n+25+3\ 2n+3
2 +1B2n+1 = mﬂ:é)_!{l2n+2s+3+12n+23+3}+(_) ¥ +1< 2n-1-3 )W'J

- (6-14)

The second set of functions may be obtained by taking ¢ = 1.
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388 R. CG. J. HOWLAND AND R. C. KNIGHT ON STRESS FUNCTIONS

2
If then v, —28720, Vo= =1, (6-15)

we have V, = cos 20+ z (°C,,+°Cs, p%) p?n cos 2nl
n=0

+ 2 (“Dygyiy D5, p7) p? sin (2n+1)0, (6-16)
n=0

where
1
Oczn = W{— 4‘(Izn+1 +I2n+ 1)

LIS ARG SIS ARG MR |

, 1 __\n+1
OOZn = 'm‘{2(12n+2+12n+2)——<12n+1+‘[2n+1>_(J2n+1+J2nl-l)}+‘(_/))2n>T: L (617)
1 . . (;A)n-#l
{ 4Ly o+ 20(2 50— Loy — Jo) b+ i

0
D2n+1 (27’1+ 1)

, 1 _ n
0D2n+1 - W'T {2‘[2n+3 (IZn F2+J2n+2>}+ ﬂZnJ)rS

Ib’ZrH 1

Differentiation with respect to £ leads to the general functions which are

Vi, = 07 [cos (25-+2) 0-+cos 298] + 3 (2Cy,+Ch, p?) g2 cos 200

n=0

+ E ( onr1+ 2Dy, p?) p?FLsin (20-11) 0, (6-18)
Vaiy = g s (26 8) 0-+5in (2541 0]+ 3 (501G, 31 2) pcos 200
3 (D, Dy, %) o sin (2041) 0. (6:19)
n=0

The new coeflicients are, in the even functions

1
ZSCQn = (W{ﬁ4(12n+2s+1+]‘2n+23+1) +2n[2(12n+23+[2n+2s)
- (12n+23-1 +12n+2s—l) - (J2n+23—1 +J2n+23—1)]}

2n-+2s—1 1
___\nts —
+( ) ( on—1 )ﬂ2n+2s’
, 1
%0y, = W{2(12n+2s+2+12n+23+2)—(12n+2s+1+12n+2s+1)

2n-42s5-F1 1
(‘]2n+2341+‘]2n+231—1 }‘l anl( n{_ ! }— )

on-+1 ) gty (6:20)
#Dyyyy = — ’(‘234)‘!“(2!’”’“;1‘)‘!‘{—‘4Tzn+zs+z+2”( 2piae1 Lonrae— Jonyas)}
D/Zn-l-l W{QT%HZH—Z};(72n7k23+2+72n+23+2)}

2n-+2s+2 }7

+(_)n+s( on-+2 )ﬂ2n+2sk3
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While for the odd functions

2s+1 1 7T

CZn = WW!{~47271+23+2+ (27’&— 1) (272n+23+1*72n+23_‘]2n+25)}
nis (20425 2n
+ (=) ( on )/W’
’ 1 T T T
2s+102n = (25+ 1)! (Qn—l— 1)!{212n+2s+3”“ (12n+2s+2+J2n+25+2)}

n (“_>n+s+1 (2n+23—|—2) (2n+2)

2012 ﬁzmﬁg’
1 (6
2S+1])2n+l - (25__]__ 1)! (27l+ 1)!{~4(12n+2s+3+‘l’2n+2s+3) + (27’!-—— l)[2(12n+2s+2 +12n+2s+2) (6 21)
- (Izn+2s+1 +12n+23+1) - (J2n+2s+l +J2n+2s+l)]}
niese1(2n+25+1) (2n4-1)
+ (~) 2n+1 W&v—{é’
, 1
2s+11)2n+1 = | |{2(12n+23+4+'[2n+2s+4) - (12n4<2s+3+12n+23+3)
(2s+1)1 (2n+2)] ;

L (2n+25+3\(2n+3
_(J2n+2s+3+J2n+2s+3)}+(_)nw( 2n1-3 )2(?211_4—2__54-2’

It is clear that the functions we have obtained are even in y but odd in x (if x, y are
co-ordinates with origin at the centre of symmetry). They are therefore suitable, with
the addition of the appropriate y giving the infinity conditions, for a problem such as
that of a strip under pure tension at infinity. It is obvious that other sets of functions,
e.g. even in x, odd in y, can be obtained should they be required by choosing the appro-
priate expansions from 5 (¢) and 5 (d).

(b) Second symmetrical case

We may next conveniently consider the other symmetrical case in which the circles
are situated as shown in fig. 9.

Y y=b

J=-b
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Here we require, in the simplest case of symmetry of the boundary conditions, func-
tions even in x. We therefore take as our fundamental stress function that giving forces P
acting in directions OY, O’Y’, i.e. )

Xo=x"+x"
where y” is given by (5:31) and y” by (5-35) with f = 0. The evaluation of the coefli-
cients of the required functions may be carried out as in the previous case and presents
nothing new. T'wo sets of functions are required and may be derived with the same two

special values of ¢, namely, ¢ = { and ¢— 0.

7. TWO PAIRS OF CIRCLES IN A STRIP

There remains one more configuration of circles in a strip which may be considered
with the expansions we have developed. The circles, four in number, are situated in the
strip as shown in fig. 10. The algebra is necessarily heavy, for we have no simplification
such as the vanishing of « or f. The work would, however, be straightforward and
presents no serious difficulty. We shall content ourselves by indicating how the funda-
mental functions can be set up. Four sets of functions will be required, each set being
derived from one or other of two stress functions y or y;.

Y

I
x
Fe

Fic. 10

First let g = gD =y (D (B ) (7-1)

where ¥ is the contribution from the singularity at O,, r = 1, 2, 3, 4. Suppose forces to
act at the centres in directions O—TS(:.

yV is given by (5-14).

¥ is obtained from (5-27) when « is replaced by —a in the various coeflicients, and
is replaced by 7—0.

y® is given by (5-27).

y® is obtained from (5-27) by changing the sign of # throughout, with f = 0.
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The second function is obtained from the expansions of the transverse forces as
follows:

Let X = U0 =+ (72)
where

xiV is given by (5-31).

xi? is obtained from (5-35) with —« for « and 7—4 for 6.

x{* is given by (5-35).

xi¥ is obtained from (5-35) with f = 0 and —¢ for 4.

The derivation of the functions is the same as in the previous section and the same
two special values of ¢ will be found suitable.

CONCLUSION

Although the functions set up have been obtained with the object of providing
machinery for the solution of problems in generalized plane stress, they are of course
suitable for the solution of the biharmonic equation in general. The only restriction is
the symmetry of the boundaries and the conditions on them. When the boundaries are
partly straight lines, the functions obtained will have to be adjusted to the appropriate
conditions of the new problem, e.g. the slow motion of a viscous fluid (cf. Howland and
Knight 1932).

I wish to express my thanks to Professor G. Temple who has read the paper in manu-
script and made a number of suggestions. Also to the Ordnance Committee for per-
mission to submit the paper for publication.

SUMMARY

A number of solutions of the biharmonic equation have been obtained, mostly in
connexion with the problems of generalized plane stress, when the boundaries have
consisted of circles and straight lines. No general method of solution can be given
but the methods which the present authors have used in certain cases are here
extended to a group of problems. The paper deals with circles in (@) the infinite
plane, (b) a strip bounded by parallel lines. The circles, their number and relative
positions, are restricted by an invariancy condition, which demands that the circles
and their boundary conditions remain invariant under one or more of a group of
transformations and/or reflexions.

In (a) the configurations have the boundaries (i) one pair of circles, (ii) two pairs of
circles, (iii) a double infinite row of circles. While in (5) (i) one pair, and (ii) two pairs
of circles are dealt with. These together with solutions previously published complete
the group of problems to which the method is applicable.
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No numerical work is included but the expansions of the necessary functions have
been determined. They may be used for any problem where the biharmonic equation
has to be solved with the appropriate boundaries. The method of solution when the
required functions have been established is indicated.
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